Kernel estimation of multivariate cumulative distribution function

نویسندگان

  • Rong Liu
  • Lijian Yang
چکیده

A smooth kernel estimator is proposed for multivariate cumulative distribution functions (cdf), extending the work of Yamato [H. Yamato, Uniform convergence of an estimator of a distribution function, Bull. Math. Statist. 15 (1973), pp. 69–78.] on univariate distribution function estimation. Under assumptions of strict stationarity and geometrically strong mixing, we establish that the proposed estimator follows the same pointwise asymptotically normal distribution of the empirical cdf, while the new estimator is a smooth instead of a step function as the empirical cdf. We also show that under stronger assumptions the smooth kernel estimator has asymptotically smaller mean integrated squared error than the empirical cdf, and converges to the true cdf uniformly almost surely at a rate of (n−1/2 log n). Simulated examples are provided to illustrate the theoretical properties. Using the smooth estimator, survival curves for US gross domestic product (GDP) growth are estimated conditional on the unemployment growth rate to examine how GDP growth rate depends on the unemployment policy. Another example of gold and silver price returns is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Estimation of the Density and Cumulative Distribution Function of the Generalized Rayleigh Distribution

The uniformly minimum variance unbiased (UMVU), maximum likelihood, percentile (PC), least squares (LS) and weighted least squares (WLS) estimators of the probability density function (pdf) and cumulative distribution function are derived for the generalized Rayleigh distribution. This model can be used quite effectively in modelling strength data and also modeling general lifetime data. It has...

متن کامل

Almost Sure Convergence of Kernel Bivariate Distribution Function Estimator under Negative Association

Let {Xn ,n=>1} be a strictly stationary sequence of negatively associated random variables, with common distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1, Xk+1) for fixed $K /in N$ based on kernel type estimators. We introduce asymptotic normality and properties and moments. From these we derive the optimal bandwidth...

متن کامل

Document De Treball Xreap2015-01 Estimating Extreme Value Cumulative Distribution Functions Using Bias-corrected Kernel Approaches

We propose a new kernel estimation of the cumulative distribution function based on transformation and on bias reducing techniques. We derive the optimal bandwidth that minimises the asymptotic integrated mean squared error. The simulation results show that our proposed kernel estimation improves alternative approaches when the variable has an extreme value distribution with heavy tail and the ...

متن کامل

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

Multivariate and Multimodal Wind Distribution Model based on Kernel Density Estimation

This paper presents a new method to accurately characterize and predict the annual variation of wind conditions. Estimation of the distribution of wind conditions is necessary (i) to quantify the available energy (power density) at a site, and (ii) to design optimal wind farm configurations. We develop a smooth multivariate wind distribution model that captures the coupled variation of wind spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008